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State-Space Analysis of the Quantum-Well
Injection Transit Time Diode

David R. Conn, Member, IEEE, and Paul D. Bauman

Abstract —A state-space linear model of the quantum-well
injection transit time (QWITT) diode is developed in this paper.
The resulting system of equations are suitable for time- and
frequency-domain analysis of the QWITT diode with its external
circuit, and since the eigenvalues (complex resonant frequen-
cies) are an integral part of the formulation, the method is
extremely useful for the design of oscillator circuits and for the
study of stability problems that are associated with supplying
bias to the diode. The model includes the effects of velocity
overshoot and carrier diffusivity, as well as the physical geome-
try of the devices being studied. It is tested by comparing the
predicted small-signal impedance with other well-known models
for similar devices. Using state-space analysis, it is predicted
that long diodes with a positive injection conductance will not
have an input impedance with a negative real part at any
frequency.

1. INTRODUCTION

HE quantum-well injection transit time (QWITT)
diode shows considerable promise for millimeter-
wave applications [1]-[6] and for integrated antenna sys-
tems that require mixers, oscillators, and control ele-
ments. In the QWITT diode structure, a double-barrier
quantum well is used as an emitter of electrons that pass
through a depleted region which supports drift, diffusion,
and displacement currents. The QWITT diode structure
that we have studied from both a theoretical and an
experimental viewpoint is shown in Fig. 1 along with the
measured -V characteristics of a typical device.
Accurate large- and small-signal device models are
required for the QWITT diode for several reasons. Most
importantly, the integration of these devices with GaAs
circuits requires a complete device /circuit simulation for
the prediction of the overall system response. Also, low-
frequency oscillations caused by bias lines and diode
mounting structures can only be understood and thus
controlled through the use of accurate models that in-
clude transit time effects, drift and diffusion currents, and
realistic assumptions about the diode geometry and para-
sitic resistances.
Botula et al. [7] have extended the small-signal model-
ing of Kesan et al. [8] for the QWITT diode, which
followed the original analysis of Read [9] and of Gilden
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and Hines [10] for IMPact Avalanche Transit Time
(OMPATT) diodes. Recently, Kidner et al. [11] have ad-
dressed the problem of power and low-frequency stability
in the QWITT diode, where they use a nondistributed
lumped element model for both the diode and the exter-
nal circuit. They conclude that stable resonant tunneling
diode operation is difficult to obtain and that there is a
significant trade-off between power generation and stabil-
ity.

This paper presents a complete state-space model of
the QWITT diode that is suitable for time- and fre-
quency-domain analysis of the diode with its external
circuit. Since the eigenvalues (resonant frequencies) are
an integral part of the analysis, the problem of device/
circuit stability is readily addressed using this technique.
The state-space technique is also useful for the design of
oscillators where the damping factor as well as the oscil-
lating frequency is required. Section II of this paper gives
a short description of state-space techniques and shows
how the state variables (electric field in the injection and
drift regions) can be used in either the frequency or the
time domain. Section III describes the method of dealing
with carrier velocity and diffusivity as a function of dis-
tance in the drift region. We use the same assumptions

employed by Botula et al. [7] in order to confirm the

state-space method of analysis with respect to an analytic
solution. This constraint is easily removed for the study of
other devices and materials or if greater modeling accu-
racy is required for the existing structure. The state-space
model of the diode is developed in Section IV and is
compared with previous analysis techniques in Section V.
New results obtained using the state-space method of
analysis are presented in Section VI. Here it is demon-
strated that long devices with positive injection conduc-
tance do not produce a negative real part of the input
impedance, as previously reported [8]. Long devices be-
come inactive as a consequence of nonconstant velocity
and diffusion in the drift region, and the obtained results
are in agreement with those reported by Song and Pan
[12].

11. Tue StaTE-SPACE ANALYSIS TECHNIQUE

The state-space [13] technique is a systematic approach
for analyzing a linear time-invariant differential system
that can be described by a state vector x of dimension N.
For this particular problem, the state vector x represents

0018-9480 /91 /0800-1403$01.00 ©1991 IEEE



1404

N+ GaAs (1xxo~[v5/c}r£’)
(0.5 um)

GaAs (undo ad)
(100" &°

Alas
(17 &%)

GaAs (undoped)
(45 &%)

Alag .
(17 &%)

L

N+ Gaas (1x10!8/cnf)
(0.9 um)

- AAs Harker
-7 ?’oo A%)

- Gads Buffer Layer
: (500 A%)

S1 GaAs Substrats
(800 um)

Fig. 1.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 8, AUGUST 1991

77.04

51.36

25.68 : /

0.0

CURRENT (mA)

-25.68

-51.36 e

1.0 0.0
BIAS VOLTAGE (V)

+1.0

(a) QWITT wafer structure. Wafers fabricated by Bell Northern Research, Ottawa, Canada; processmg by

Commumcatlons Research Centre Dept. of Communications, Ottawa, Canada; (b) Measured current—voltage characteristic
for GWITT diode of 100 wm? cross-sectional area (quantum well consists of AlAs/GaAs/AlAs heterostructure. of

dimensions 20 /45 /20 A drift region length is 1.5 pwm).

the electric field at N discrete points in the QWITT
diode. The normal (canonmical) form of the system of
equations is defined as

£(1) = Ax(1) + Bu(1) (1)

and

y(t)=Cx(t)+ Du(t) (2)

where

x is a vector of state variables of dimension N;

u is a vector of input variables of dimension M;

A is the characteristic matrix of the system of dimen-
sion N X N:

Bi§ a N X M matrix that relates the input variables to
the system;

y is the output vector of length J;

Cis a J X N matrix that relates x to y;

Dis a J X M matrix that relates u to y;

and (-) represents the time derivative.
The time-domain solution for the system is given by

x(1) = e*x(0) + fo’eA@-ﬂBu(T) dr. (3)

Here the state variable x(¢) is completely determined by
the initial conditions x(0) and the input u(7).

The frequency-domain response of the system is found
by taking the Laplace transform of the normal form (egs.
(1) and (2)) with the result

Y(s)=C(sI —A4) " 'BU(s)+ DU(s) (4)

where s = jw is the complex radian frequency and I is
the identity matrix. Equation (4) is the principal result of
this section, to be used in the derivation of the QWITT
diode device model. The natural resonant frequencies of

the system are given by the complex eigenvalues of the 4
matrix, where the real part gives the system damping
factor and the imaginary part gives the resonant frequen-
cies. This feature is extremely useful for studying oscilla-
tors and low-frequency stability problems.

ITII. TRANSIENT CARRIER TRANSPORT

Transient transport effects in the drift region of the
device must be included in order to construct an accurate
device model [7]. Nonuniform carrier velocity results from
the injection of electrons of high energy and, hence, high
velocity into the drift region, with the carrier velocity
subsequently decaying towards a steady state saturated
drift velocity, vg,, at approximately 700 A from the i injec-
tion plane [7]. Also, according to Monte Carlo simulations
conducted by Glisson et al. [14], the carrier diffusivity is a
function of time. Our carrier transport analysis follows
the technique of Botula er al. [7] and Song et al. [12] for
carrier velocity. Since the diffusion component of the
current is relatively small, we approximate the diffusivity
with its constant steady-state value of Dy =15 cm? /s.

The carrier velocity v and position x as functions of
time are given by [7]

(5)

v(r)=Ave "+ v,
and

x(£) = vt +TAV(1—e /)

(6)

where v, is the saturated carrier velocity in the drift
region, v, is the peak carrier velocity in the drift
region, r is the velocity time constant, which is taken as
810~ g, and Av=v__, — U

peak sat*
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In order to implement the state-space model of the
device, we have used (5) and (6) to determine the tran-
sient velocity as a function of position in the drift region
of the device. Flg. 2 shows the relationship for the carrier
drift velocity as a function of x for the case of v, = 6X
10° em/s, Upeq=7%107 cm/s, and 7=0.08 ps. The
graph represents a. third-order curve fit to (5) and (6).

IV. THE STATE-SPACE MODEL OF THE
QWITT DionEe

The state- -space analysis approach is essentially a
method of fmdlng a solution to the one- dlmensmnal
equation

d’E(x,t dE(x,t J, dE(x,t
D(x) __(_Z_)H - ___(_) + 2t _(_l (
dx dx €y dt
which arises fmm the continuity equatiou
dE(x,1) dn(x,t)
tzedT—qn(x t)U(JC)JNJD(X) o &
together with Poisson’s equation:
- Gd dE( X, t)
= _ 9
n(x) - (©)

where v(x) is the electron velocity, n(x) is the electron
density, J, is the total current density, D(x) is the elec-
tron diffusivity, and €, is the dielectric constant in the
drift region.

A variable cross-sectional diode area is accounted for
in this analysis by modeling current flow- in the drift
region as laminar; i.e., the total current is assumed con-
stant with respect to distance x and thus the current
density is constant over any diode cross sectlon that is

perpendicular to the x direction. This approximation will

be valid only for tapers that vary smoothly thh dlstance
through the drift region.
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The model used in this paper for the QWITT is linear
where we have used the large field velocity profile for the
drift region. In our analysis, we inject a current from a
constant current source, calculate the resulting voltage,
and then compute the device impedance from the relation

- Z=V /I, where V is the complex phasor of the terminal

voltage and [ is the phasor of the injected current. This
allows us to normalize the current den51ty at any single
position in the dev1ce

In addition, the analysis rests on the assumption that
the response of the quantum well structure to the applied
electric field is instantaneous. That is, the quantum well
analysis is quasi-static. This assumption is appropriate up
to approximately 300 GHz [15].

State-space modeling proceeds by dividing the quantum
well and drift regions of the QWITT device into N
elements. Such a discretization, in effect, allows for the
numerical solution of (7). Current continuity- equations
are then written at element boundaries, corresponding to
the general state equation formulation described above.
With reference to Fig. 3, the following terms are defined
in the state-space model of the QWITT‘

A, =cross- sectlonal area of the kth slice (cm? )

Ax =elemental width (cm),

V, =volume of the kth element (cm?),

n; =electron density within the kth element (cm™3),

Q, =charge contained within the kth element (C),

E, =electric field at the kth slice (V/cm),

vk =average electron velocity at the kth slice (cm/s),

=electron diffusivity at the kth slice (cm?/s),

Jck = conduction current density at the kth slice
(A/cm?),

= dlsplacement current density at the kth slice
(A/cm?).

By way of further nomenclature, the kth element is
bounded by slices of area A,_; (i.e., the cross-sectional

Jar

- area of the right-hand boundary of the (k — Dth element)

and A,. Tapered diodes: are ‘accounted for by the inclu-
sion of cross-sectional area in the formulation, and in this
case, elements are truncated pyramidal in shape. -

The total current density flowing inside a semiconduc-
tor can be written as the sum of dlsplacement “drift, and
diffusion current density components. In formulating the
state-space model we -are interested in expressing the
total current density, J,, as the sum of these current
components for each of the k elements, i.e., .

(10)

Dlsplacement current arises within a semiconductor as
a consequence of time-varying electric fields within the
insulating material; i.e., particle currents are not responsi
ble for current flow but it 1s the change in d1electr1c
polarization which maintains current continuity across the
semiconductor [16]. This dxelectrlc displacement current
density is expressed as Jdlsplacement oD /dt, where D is
the dlelectrlc dlsplacemcnt vector. For a linear dielectric,

‘I T J displacement, k + Jdrift k +J diffusion, &k *
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State-space model representation for the QWITT. The RTD is divided into N elements with N —1 elements of

width Ax describing the drift reg1on J.k and J; , are the conduction and displacement current densities, respectively, 4,
is the cross-sectional area, vy is the electron particle velocity, and E, is the electric field at the right boundary of the kth
element. V, is the volume of the kth element, n, is the electron density, and Q, is the amount of charge contained within

the kth element.

D =¢,E, where ¢, is the dielectric constant and E is the
electric field vector [16]. Therefore, the displacement
current density at the kth slice (caused by the kth ele-
ment) can be expressed as

(11)

It is to be noted that in Fig. 3 the first element in the
state-space model describes the quantum well region,
while the remaining N —1 elements describe the drift
region of the device. For the first element, the diffusion
contribution is neglected owing to the tunneling process
in the quantum well region. Thus the total current den-
sity, J,, is given by

Jdisplacement, k= EdEk .

Jo=€.E1 + Jyp 1-

(12)
- The drift current density is simply determined by the

injection conductance of the quantum well region, i.e.,

Jarite,1 = Ogy E1. Therefore, for the first element,

E1=—fﬂcE1+th. (13)
€q €4

On comparison with (1), it is apparent that (13) has the
generalized state equation form where the electric field
and total current density correspond to state variables x
and u, respectively.

By definition, for low electric fields, the electron con-
duction current density is written as [17]

J w,nE +qDVn

conduction — — 4 (14)
where w,, is the electron mobility (cm?/V-s) and D, is
the diffusion constant (cm?/s). For high clectric fields,
u, E is given by the saturated drift velocity [17], but since
transient transport effects cannot be neglected [14], a
more general expression for the conduction current den-
sity is

—qnv + qDVn (15)

where v is the electron particle velocity and D is the
electron diffusivity.

The drift current density component is identified as the
first term of (15), and the contribution for the kth ele-

J conduction ~

ment is written as
Jarite, k = — ARV (16)

where g is the unit of electron charge, v, is the average
electron particle velocity, and #’, is the density of elec-
trons at the kth slice, approximated as the average of
electron densities for the kth and (k + 1)th elements.

Gauss’s law requires that, over a closed surface, the
surface integral of the normal component of the electric
field be equal to the sum of charges inside the enclosed
volume divided by the dielectric constant. Since the kth
slice is located at the center of the kth and (k +1)th
elements, we consider both elements in applying Gauss’s
law. Approximating the electron density for the complete -
volume as ), the total charge is given by O, +Q, ., =

—qni (V. + V., ). With reference to Fig. 3, it is apparent
that the input and output fluxes for the volume defined by
the kth and (k +Dth elements are €,-4,_,-E,_, and
€,°Ap, " Er 1, respectively. Therefore, Gauss’s law is
expressed as —gn,(Vy + Vi D) =€ A, 1" Epr— Ax_y
E, _,1. Solving for the charge density and substituting into
(16) then gives the drift current density for the kth
element:

€alk
—_— 17
Vit Visa (17

For the kth element, the diffusion current density
component of (15) is written as

on, Mpsr— My,
ox = qu{ Ax }
where D, is defined as the electron particle diffusivity at
the kth slice and the derivative is approximated by the
difference in electron density between the (k -+ 1)th and
kth elements divided by the clemental width, Ax. As
above, Gauss’§ law is applied in determining the charge
densities for the kth and (k +1)th elements, and the
diffusion current density becomes

€4Dp

—{—-A. .V E
AkaVk+1 [{ k—1 k+1} k—1
+ AV +Vis Ee —{ A i Vi) Erd]

[Ak+1'Ek+1 - Ak—l'Ek—l]'

J drift, k

Jdlffuslon r=4D——

Jdiffusion, k=

(18)
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Adding the contributions from displacement, drift, and
diffusion components (egs. (11), (17), and (18), respec-
tively) yields the total electron current density, J,. Rear-
ranging in terms of Ek and collecting electric field terms
defines the system of state equations for elements 2 to
N-1:

. 1

v D
Ey=—I+A,_, k k
¥

+ ‘E
Vi + Vs Ax-Vk] k-1

B Dy AVi + Vi) .
Ax Vi Viss g
D, Uk
AxVier VitV

+Ak+1[ }-Ekﬂ. (19)

For the drift and diffusion current density components
of the Nth element, the charge density at the right-hand
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Applying Gauss’s law and rearranging in terms of EN

gives
) 1 Ay, vy 4Dy
EN=_]t_———_'[—_+_" Ly
44, v D
P [, Dy
Va 3 9Ax
4v v 4D
+ Ay |- il -
Wy 3(V_ +Vy)  9AxVy

4Dy, .
+ Ey.
Ax(Vy_1+ V)|~

Equations (13), (19), and (21) form a set of equations with
the generalized matrix form

(21)

boundary of the drift region is approximated through a E = AE + l J, (22)
parabolic interpolation in the drift region. This is a sec- €4 ‘
where the 4 matrix is written as
1 2 3 k-1 k k+1 N-2 N-1 N
{ Ouw -
-— 0 0 0 0 0 0 0 0
€4
Xy Y, Zx 0 0 0 0 0 0
S R A
0 0 0 Xek-1 Yier Zrisr 0 0 0
i 0 0 0 0 0 0 Xyn-2 Yyn-1 Zyn ]
ond-degree extrapolation of the adjacent charge density and
values and is useful for minimizing slope discontinuity at
the boundary, particularly for the diffusion term. Given X -4, . Yk + Dy
the equation for a parabola, f[k]=ak?+b, it can be okl k-t Ve+ Vi, AxVy

shown that f[0]=4/3f[1]1-1/3f[2]. Using this result,
the charge density at the right-hand boundary of the Nth
element, n'y, is written as

! 4 1 !
Wy = EnN — EnN_l'
The derivative involved in the diffusion current density
contribution, however, requires the charge density gradi-
ent across the boundary. Considering an (N + Dth ele-
ment, parabolic interpolation is again used, and based on
charge density values in the drift region, the charge den-

sity at the center of this element is approximated as

4 1

P g— ! —_——
Any1= 3"N 3”‘1\1-

Thus, for the Nth element, the expression for the total
current density, J,, becomes
Rysy1— BN

Ax (20)

— " s
J,=e€,En —quyny —

Dy A(Vi +Viin}
Ax Vi Visy

D, U }
AxViyr VitVig

Yk,k -

Zk,k+1=Ak+1'[

where Xy y_p, Yy n-1> and Zy \ are defined as the
electric field coefficients in (21).

Equation (22) has the general state equation form of
(1), expressing the time-domain behavior of electrons
within the RTD in terms of current and electric field.
Applying Laplace transformation, and assuming the total
current density to be normalized to unity, the frequency-
domain response of the RTD becomes

. 1

E(S)=(SIN><N_-A)‘1;;IN><1' (23)
where I,y is the square identity matrix and I, is a
unit column vector. Given the electric field, the total
voltage across the device, relative to the cathode, can be
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Fig. 4. Device impedance (nontapered QWITT, L, =0.01 um, o=
—300 mS-cm) versus frequency for varying drift region length as calcu-
lated using the state-space model (uniform velocity profile with v(x) =
Usar = 6 X 10% cm /s, diffusion effects not included): drift region
=0.23 um; —~- drift region length = 0.07 um. Symbols correspond to

results computed using the analytic solution obtained by Kesan ez al. [8):-

O, W resistive and reactive components, respectively, W =0.23 ym; A,
A resistive and reactive components, respectively, W = 0.07 um.

written as

- N - N Ax

Vi(s) ={L, +Ax /2}E\(s)+ ), Ek(S)Ax+7EN(S)
k=1

= J.(5)Z(s)

and since unity current ‘density has been assumed, the
normalized device impedance Z(s) in Q-cm? is directly
obtained.

(24)

V. COMPARISON WITH PREvVIOUS RESULTS

To confirm the validity of the state-space approach, we
have compared our results with previously reported ana-
Iytic solutions. Specifically, we have compared the state-
space results with the models of Kesan et al. [8] for ideal
devices and with the models of Botula et al. [7] that
include nonsaturated drift velocity and diffusion effects.

The comparison of the state-space formulation with the
analytic solution of Kesan et al. is presented in Fig. 4 for
diodes with varying drift region length (W = 0.23 and 0.07
pm). In all cases, the drift velocity is assumed to be
saturated at a value of 6x10° cm/s, with the injection
conductance taken to be —300 mS-cm. At this point,
diffusion effects are not taken into consideration. For
state-space analysis, we have found that it is necessary to
subdivide the drift region into elements that are no greater

than one tenth of a wavelength in width at the maximum

frequency of interest. In this case, the wavelength is 0.06
pm at a frequency of 1000 GHz, which means that the
drift region must be subdivided into at least 38 elements.
For our analysis, we have used 75 elements in all cases.
The small-signal negative impedance of the diodes as
shown in Fig. 4 agrees very well with the analytic solution
of Kesan et al. [8] for all cases studied and for frequencies
up to 1000 GHz.

We have also compared the state-space method with
the results of Botula ef al. in modeling transient transport
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Fig. 5. Device impedance (nontapered QWITT, L, =75 lgx, W=
0.16 wm) versus frequency as calculated using (a) state-space
model (nonuniform velocity: vy, =7X107 cm/s, vy, =6x10% cm/s,
T=8x10"" s, diffusion effects not included, ¢ = —771.3 mS-cm);
(b) ——- state-space model (nonuniform velocity, including diffusion
effects, o = —728.5 mS-cm). Symbols correspond to results reported by
Botula and Wang [7): O, W resistive and reactive components, respec-

tively (nonuniform velocity, diffusion effects not included, o = —781
mS-cm); A, A resistive and reactive components, respectively (nonuni-
form velocity, including diffusion effects, o = — 658 mS-cm).

effects in the drift region. The two cases studied are
nonuniform carrier velocity not including diffusion and
nonuniform velocity including the effect of diffusion. As
described above in Section III, we use the same velocity
profile as Botula et al. (shown previously in Fig. 2) and
assume a constant diffusivity of D, =15 cm? /s. For this
analysis N =500 and, in all cases, the diodes are assumed
to be of constant cross-sectional area and a series para-
sitic resistance of 2 € -cm? is included, as in [7]. All
injection conductance values have been adjusted such that
the device impedance is normalized to —10.6 u ) -cm? at
low frequency, allowing for a direct comparison with the
modeling by Botula er al. The results of this study are
given in Fig. 5, where the real and imaginary parts of the
small-signal impedance are given for the two cases.

In the first case, the device impedance predicted using
the state-space model agrees very well with the solution
obtained by Botula et al. Differences are apparent, how-
ever, when the effects of diffusion are included. In this
case, the state-space model predicts a slightly higher
cutoff frequency for the resistive component than that
predicted by the diffusionless model, whereas Botula
et al. predict a lower frequency cutoff, On further com-
parison, for the state-space model the inclusion of diffu-
sion results in a lower reactive component at the resonant
frequency; since there is closer correspondence between
resistive components for the two cases, this implies that
diffusion has a smaller effect on the device impedance
than previously reported. Furthermore, given the differ-
ences in injection conductance required to normalize the
low-frequency negative resistance to 10.6 uQ-cm? for
cases including and excluding diffusion (42.8 mS-cm for
the state-space model versus 123 mS-cm reported by
Botula er al.), this also implies that the state-space model
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0.24, 0.32 um) versus frequency as calculated using the state-space
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predicts that diffusion affects the device impedance less
than the modeling proposed by Botula et al.

VI. New REsuLTts

In this section, we report new results for the perfor-
mance and modeling of active and passive RTD’s. These
results include the effect of diffusion on the impedance of
RTD’s of various lengths, the performance of long diodes
with a positive injection conductance, and a demonstra-
tion of the traveling wave nature of current, charge, and
electric field in the drift region.

Initially, we have studied the quantitative effects of
diffusion on the impedance of active diodes of negative
injection conductance for various diode lengths. For this
study, we have sele(gted a typical RTD with a quantum
well length of 75 A and an injection conductance of
—771.3 mS-cm. The impact of diffusion on the real part
of the RTD impedance is shown in Fig. 6(a), where the
* RTD impedance is plotted versus frequency for drift
region lengths of 0.16,.0.24, and 0.32 pm. For each diode
configuration, we have plotted the impedance using the
complete model, velocity profile and diffusion included,
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velocity profile (Upeq = 7X 107 em/s, vy, = 6X10° cm/s, 7=8x107 1
s), neglecting diffusion; ~—~—positive resistance as calculated using
state-space model with non-constant-velocity profile, including diffusion.

and the model where the diffusion term of the current is
neglected. It is seen in Fig. 6(a) that in all cases the effect
of diffusion adds a positive component to the RTD resis-
tance and that the effect is more pronounced for long
diodes. For short diodes (W.=0.16 um), the diffusion
current reduces the negative resistance for low frequen-

~ cies by approximately 12%. The reactive component of

the impedance is shown in Fig. 6(b). Here it is noted that
the agreement between models with respect to the pre-
dicted resonant frequency improves as the drift region
length decreases.

We now consider the performance of long diodes that
have a positive quantum-well injection conductance.. Pre-
vious results [8] indicate that even with a positive conduc-
tance, the RTD will still exhibit a negative ~device
impedance for certain values of the drift region length
and quantum well admittance. Basically, the drift region:
length must be near a multiple of one wavelength at the
operating frequency if it is to produce a negative
impedance. In agreement with the results reported in [12],
our results confirm that these devices do not exhibit
negative impedance at any frequency because of the com-
bined effects of diffusion current and a nonconstant ve-
locity profile in the drift region. This is demonstrated in
Fig. 7, where the RTD resistance, positive or negative, is
plotted as a function of frequency for a diode with an
injection conductance of +500 mS-cm and a drift region
length of 0.4 wm. The analytic solution of Kesan et al. [8]
shows that this diode exhibits a negative resistance in the
region of 120 GHz. The case where the velocity profile
and diffusivity are included shows that the resistance is
positive for all frequencies, approaching zero at high
frequency and 140 pQ-cm? at low frequency, as ex-
pected. Similarly, for the case where diffusion is ignored
but the velocity profile is included, the diode resistance is
always positive with asymptotic behavior, as before, but
now shows a fairly strong oscillation with frequency.
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Usat
with non-constant-velocity profile, including diffusion.

As given by (23), the electric field at each of the
defined elements, hence as a function of position in the
QWITT, directly results from the state-space modeling
approach. Given the elemental electric field, the charge
density, as well as the current density, components are
readily obtained. Fig. 8 shows the magnitudes of the
elemental electric field and charge density for nonuni-
form velocity formulations including and excluding diffu-
sion for three different frequencies: 1 GHz (below reso-
nance), 100 GHz (at resonance), and 1000 GHz (above
resonance). Physical QWITT parameters are as previously
studied, with the corresponding impedance versus fre-
quency shown in Fig. 5.

Two features are immediately apparent in considering
Fig. 8. First, the electric field and charge density appear
to be complementary as a function of position. For exam-
ple, for the 1 GHz case, the electric field decays across
the RTD while the charge density increases to an equilib-
rium value. Second, both the electric field and the charge
density decrease in magnitude with frequency while dif-
ferences in the charge density for formulations including
and excluding diffusion increase with frequency. It is to
be noted that the wavelength of oscillations apparent in
the electric field for the 1000 GHz, diffusionless case
corresponds to 0.06 um, as expected, demonstrating the
traveling wave nature of carrier transport in the drift
region.

Calculated using state-space model, ¢ = —771.3 mS-cm, non-constant-velocity profile (upeak =7x107 cm/s,
=6x10° cm/s, 7=8X 10~ s), neglecting diffusion; ——~— calculated using state-space model, o = —728.5 mS-cm,

Fig. 9 shows the magnitudes of the current density
components for the same parameters as in Fig. 8. In
general, the displacement current density component
dominates at higher frequencies, while the drift current
component dominates at lower frequencies and the diffu-
sion current appears to offer a relatively small contribu-
tion. An important feature to note is the peak in drift and
diffusion current density components (for the formulation
including diffusion) occurring at 0.05 um. However, these
current density components are in phase opposition so
that the conduction current, given by the sum of the drift
and diffusion components, roughly corresponds to the
drift component for the diffusionless formulation. Again,
oscillations in the displacement current density for the
1000 GHz, diffusionless case have a wavelength of
0.06 wm.

VII. CoNCLUSION

We have presented a state-space model of the QWITT
diode and confirmed its accuracy through comparison
with previous analytical solutions obtained by Kesan ef al.
and Botula et al. The comparison showed that the state-
space method agrees with previous models in most cases.
In agreement with results obtained by Song et al., one
significant difference is that for diodes with a positive
injection conductance and a long drift region, our models
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Fig. 9. Small-signal phasor magnitudes of (a) displacement, (b) drift,
and (c) diffusion current density compgnents versus position in the drift
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ent frequencies: O 1 GHz (below resonance); O 100 GHz (at reso-
nance);. o 1000 GHz (above resonance). The origin is located at the
injection plane definéd by the quantum-well region.
using state-space model, o = —771.3 mS-cm, non-constant-velocity pro-
file (Vo0 = 7X 107 cm/s, v o= 6X10% cm/s, 7 =8X1071* 5), neglect-
ing diffusion; ~—-—- calculated using state-space model, o = —728.5
mS-cm, non-constant-velocity profile, including diffusion.

do not predict a negative real part of the device input
impedance, as predicted by the model of Kesan et al. The
input impedance always has a positive real part because
of the damped traveling wave nature of the displacement
current in the drift region. This only becomes evident
when carrier diffusivity and velocity profiles are consid-
ered. A second difference noted was that the state-space
model indicates that carrier diffusion has a smaller effect
on the device impedance than predicted by Botula et al.

The state-space method is readily suited to the analysis
of diodes and the circuits in which they are embedded. It
is also particularly useful for the study of millimeter-wave
oscillators since the eigenvalues of the complete system
are contained in the system matrix. It is expected that this
technique can be extended to many circuit and device
applications. A prime candidate for the application of this
technique is the optical p-i-n photo detector diode, which
is useful in high-speed applications. Generation and re-
combination processes must be included in the analysis of

Calculated -
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the p-i-n diode, an extension that is now being consid-
ered.

We have found that the state-space. modehng approach
to transit-time-limited devices provides a great deal of
insight into the physical process within the diode. For
example, the traveling wave natures of all currents, fields,
and charge densities are a natural outcome of the analy-
sis. This method of analysis is directly useful for time-
domain analysis and time-domain nonlinear simulation
since the state equations can be implemented directly i in
SPICE computer programs.
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