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Abstract —A state-space linear model of the quantum-well

injection transit time (QWITT) diode is developed in this paper.

The resulting system of equations are suitable for time- and

frequency-domain analysis of the QWITT diode with its external

circuit, and since the eigenvalues (complex resonant frequen-

cies) are an integral part of the formulation, the method is
extremely useful for the design of oscillator circuits and for the
study of stability problems that are associated with supplying
bias to the diode. The model includes the effects of velocity
overshoot and carrier diffusivity, as well as the physical geome-
try of the devices being studied. It is tested by comparing the
predicted small-signal impedance with other well-known models

for similar devices. Using state-space analysis, it is predicted
that long diodes with a positive i~ection conductance will not
have an input impedance with a negative real part at any

frequency.

1. INTRODUCTION

T HE quantum-well injection transit time (QWITT)

diode shows considerable promise for millimeter-

wave applications [1]–[6] and for integrated antenna sys-

tems that require mixers, oscillators, and control ele-

ments. In the QWITT diode structure, a double-barrier

quantum well is used as an emitter of electrons that pass

through a depleted region which supports drift, diffusion,

and displacement currents. The QWITT diode structure

that we have studied from both a theoretical and an

experimental viewpoint is shown in Fig. 1 along with the

measured 1– V characteristics of a typical device.

Accurate large- and small-signal device models are

required for the QWITT diode for several reasons. Most

importantly, the integration of these devices with GaAs

circuits requires a complete device/circuit simulation for

the prediction of the overall system response. Also, low-

frequency oscillations caused by bias lines and diode

mounting structures can only be understood and thus

controlled through the use of accurate models that in-

clude transit time effects, drift and diffusion currents, and

realistic assumptions about the diode geometry and para-

sitic resistances.

Bc,tula et al. [7] have extended the small-signal model-

ing of Kesan et al. [8] for the QWITT diode, which.

followed the original analysis of Read [9] and of Gilden
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and Hines [10] for IMP act Avalanche Transit Time

(IMPATT) diodes. Recently, Kidner et al. [11] have ad-

dressed the problem of power and low-frequency stability

in the QWITT diode, where they use a nondistributed

lumped element m’odel for both the diode and the exter-

nal circuit. They conclude that stable resonant tunneling

diode operation is difficult to obtain and that there is a

significant trade-off between power generation and stabil-

ity.

This paper presents a complete state-space model of

the QWITT diode that is suitable for time- and fre-

queney-domain analysis of the diode with its external

circuit. Since the eigenvalues (resonant frequencies) are

an integral part of the analysis, the problem of device{

circuit stability is readily addressed using this technique.

The state-space technique is also useful for the design of

oscillators where the damping factor as well as the oscil-

lating frequency is required. Section 11 of this paper gives

a short description of state-space techniques and shovvs

how the state variables (electric field in the injection and

drift regions) can be used in either the frequency’ or the

time domain. Section III describes the method of dealing

with carrier velocity and diffusivity as a function of dis-

tance in the drift region. We use the same assumptions

employed by Botula et al. [7] in order to confirm the

state-space method of analysis with respect to an analytic

solution. This constraint is easily removed for the study of

other devices and materials or if greater modeling accu-

racy is required for the existing structure. The state-space

model of the diode is developed in Section IV and is

compared with previous analysis techniques in Section ‘V.

New results obtained using the state-space method of

analysis are presented in Section VI. Here it is demon-

strated that long devices with positive injection conduc-

tance do not produce a negative real part of the input

impedance, as previously reported [8]. Long devices be-

come inactive as a consequence of nonconstant velocity

and diffusion in the drift region, and the obtained results

are in agreement with those reported by Song and Pan

[12].

IL THE STATE-SPACE ANALYSIS TECHNIQUE

The state-space [13] technique is a systematic’ approach

for analyzing a linear time-invariant differential system

that can be described by a state vector x of dimension N.

For this particular problem, the state vector x represents
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Fig. 1. (al QWITT wafer structure. Wafers fabricated by Bell-Northern Research, Ottawa, Canada; processing by
Communications Research Centre, Deut. of Communications, Qttawa, Canada; (b) Measured current–voltage characteristic

for QWITT diode of 100 wmz ‘cros~-sectional area (quantum well consists of AIAs/GaAs/AIAs heterostructure of

dimensions 20/45/20 ~, drift region length is 1.5 #m).

the electric field at ~ discrete points in the QWITT

diode. The normal (canonical) form of the system of

equations is defined as

i(t) =zlx(t)+lhz(t) (1)

and

y(t) =cx(t)+Du(t) (2)

where

x is a vector of state variables of dimension N

u is a vector of input variables of dimension M;

A is the characteristic matrix of the system of dimen-

sion N X N,

B i~ a N X M matrix that relates the input variables to

the system;

y is the output vector of length J;

C is a J x N matrix that relates x to Y;
D is a J X M matrix that relates u to y;

and (”) represents the time derivative.

The time-domain solution for the system is given by

x(t) = e~’x(0) + /ie~(’–’)Bu(7) d~. (3)
o

Here the state variable x(t) is completely determined by

the initial conditions x(O) and the input u(7).

The frequency-domain response of the system is found

by taking the Laplace transform of the normal form (eqs.

(1) and (2)) with the result

f(s) = C(’S– A)-lBti(s) + Dti(s) (4)

where s = jo is the complex radian frequency and Z is

the identity matrix. Equation (4) is the principal result of

this section, to be used in the derivation of tlie QWITT

diode device model. The natural resonant frequencies of

the system are given by the complex eigenvalues of the A

matrix, where the real part gives the system damping

factor and the imaginary part gives the resonant frequen-

cies. This feature is extremely useful for studying oscilla-

tors and low-frequency stability problems.

III. TRANSIENT CARRIER TRANSPORT

Transient transport effects in the drift region of the

device must be included in order to construct an accurate

device model [7]. Nonuniform carrier velocity results from

the injection of electrons of high energy and, hence, high

velocity into the drift region, with the carrier velocity

subsequently decaying towards a steady-state saturated

drift velocity, U,at, at approximately 700 i% from the injec-

tion plane [7]. Also, according to Monte Carlo simulations

conducted by Glisson et al. [14], the carrier diffusivity is a

function of time. Our carrier transport analysis folIows

the technique of Botula et al. [7] and Song et al. [12] for

carrier velocity. Since the diffusion component of the

current is relatively small, we approximate the diffusivity

with its constant steady-state value of DO = 15 cm2/s.

The carrier velocity u and position x as functions of

time are given by [7]

and

x(t) = v,.tt +~Au(l–e–f”) (6)

where v~~t is the saturated carrier velocity in the drift

region, UP,,~ is the peak carrier velocity in the drift

region, T is the velocity time constant, which is taken as

8X 10-14 s, and Av = UP.,~ – Us,t.
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Fig. 2. Carrier drift velocity A as a function of position in the drift
region (uPeak = 7 x 107 cm/s, U,at = 6 x 106 cm/s, T = 8 X 10–*4 s). The
origin is located at the injection plane defined by the quantum well

region.

In order to implement the state-space model of the

device, we have used (5) and (6) to determine the tran-

sient velocity as a function of position in the drift region

of the device. Fig: 2 shows the relationship for the carrier

drift velocity as a function of x for the case of U,,t =6x

106 cm/s, up.a~ = 7 x 107 cm\s, and 7 = 0.08 ps. The

graph represents a third-order curve fit to (5) and (6).

IV. THE STATE-SPACE MODEL OF THE

QWITT DIODE

The state-space analysis approach is essentially a

method of finding a solution to the one-dimensional

equation

d2E(x, t) dE(x, t)
D(x) ~2

+~=dE(x, t)
–u(x) ~ (7)

e~ dt

which. arises from the continuity equation

dE(x, t)
J,= cd dt –qn(x, t)u(x)+qD(x:

together with Poisson’s equation:

–Ed dE(x, t)
l’Z(x)=—

q dx

‘n(:’;) (8)
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The model used in this paper for the QWITT is linear

where we have used the large field velocity profile for the

drift region. In our analysis, we inject a current from a

constant current source, calculate the resulting voltage,

and then compute the device impedance from the relation

Z = V/l, where V is the complex phasor of the terminal

voltage and 1 is the phasor of the injected current. This

allows us to normalize the current. density at any single

position in the device.

In addition, the analysis rests on the assumption that

the response of the quantum well structure to the applied

electric field is instantaneous. That is, the quantum well

analysis is quasi-static. This assumption is appropriate up

to approximately 300 GHz [15].

State-space modeling proceeds by dividing the quantum

well and drift regions of the ~QWIm device into N
elements. Such a discretization, in effect, allows for the

numerical solution of (7). Current continuity equations

are then written at element boundaries, corresponding to

the general state equation formulation described above.

With reference to Fig. 3, the following terms are defined

in the state-space model of the QWITT:

A~ = cross-sectional area of the k th slice (cm2),

Ax= elemental width (cm),

V~ = volume of the kth element (cm3),

n~ = electron density within the k th element (cm-3),

Q~ = charge contained within the kth element (C),

Ek = electric field at the kth slice (V/cm),

v~ = average electron velocity at the kth slice (cm/s),

Dk = electron diffusivity at the kth slice (cm2/s),

Jck = conduction current density at the k th slice

(A/cm2),,
Jdk = displacement current density at the kth slice

(A/cm2).

By way of further nomenclature, the kth element is

bounded by slices of area A~_ ~ (i.e., the cross-sectional

area of the right-hand boundary of the (k – l)th element)

and xl~. Tapered diodes are ‘accounted for by the inclu-

sion of cross-sectional area in the formulation, and in this

case, elements are truncated-pyramidal in shape.

The total current density flowing inside a semiconduc-

, tor can be written as the sum of displacement, drift, and

(9)

where u(x) is the electron velocity, iz(x ) is the electron

density, J, is the total current density, D(x) is the elec-

tron diffusivity, and Ed is the dielectric constant in the

drift region.

A variable cross-sectional diode area is accounted for
in this analysis by modeling current flow in the drift

region as Iaminar; i.e., the total current ii assumed con-

stant with respect to distance x and thus the, current

density is constant over any diode cross section that is

perpendicular to the x direction. This approximation will

be valid only for tapers that vary smoothly with distance
through the drift region.

diffusion current density components. In formulating th~e

state-space model we are interested in expressing the

total currerit density, ~t, as the sum of these current
components for each of the k elements, i.e.,

Jt=J d,spl~~ernent, k y Jrlrift, k + Jdiffusion, k. (lo)

Displacement current arises within a semiconductor i~s

a consequence of time-varying electric fields within the

insulating material; i.e., particle currents are not responsi-

ble for current flow but it is the change in dielectric

polarization which maintains current continuity across the

semiconductor [16]. This dielectric displacement current
density is expressed as Jdi,~laCe~~~t= 8D/i?t, where D is
the dielectric displacement vector. For a linear dielectric,
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Fig. 3. State-space model representation for the QWITT. The RTD is divided into N elements with N – 1 elements of
width Ax describing the drift region. .lC,~ and Jd, ~ are the conduction and displacement current densities, respectively, A ~

is the cross-sectional area, v~ is the electron particle velocity, and Ek is the electric field at the right bounda~ of the k th
element. P’k is the volume of the k th element, n ~ is the electron density, and Q~ is the amount of charge contained within

the k th element.

D = edE, where Ed is the dielectric constant and E is the ment is written as

electric field vector [16]. Therefore, the displacement .ld,ift, ~ = – qn’#k (16)
current density at the k th slice (caused by the k th ele-

ment) can be expressed as
where q is the unit of electron charge, v~ is the average

electron particle velocity, and n’, is the density of elec-
Jdi,placement,~ = 6dEk . (11) trons at the kth slice, ‘approximated as the a~erage of

It is to be noted that in Fig. 3 the first element in the

state-space model describes the quantum well region,

while the remaining N – 1 elements describe the drift

region of the device. For the first element, the diffusion

contribution is neglected owing to the tunneling process

i~ the quantum well region. Thus the total current den-

sity, Jt, is given by

J,= edE1 + Jdrift,l. (12)

The drift current density is simply determined by the

injection conductance of the quantum well region, i.e.,

Jdri~t,~= a~w.El. Therefore, for the first element,

(13)

CM comparison with (l), it is apparent that (13) has the

generalized state equation form where the electric field

and total current density correspond to state variables x

and u, respectively.

By definition, for low electric fields, the electron con-

duction current density is written as [17]

Jconduction = – qp~ nE + @~Vn (14)

where ~~ is the electron mobility (cm2/V”s) and Dn is

the diffusion constant (cm*/s). For high electric fields,

I-L~”E is given by the saturated drift velocity [171, but since
transient transport effects cannot be neglected [14], a

more general expression for the conduction current den-

sity is

Jconduction = – qnv + qDVn (15)

where u is the electron particle velocity and D is the

electron diffusivity.

The drift current density component is identified as the

first term of (15), and the contribution for the k th ele-

electron densities for the k th and (k + l)th elements.

Gauss’s law requires that, over a closed surface, the

surface integral of the normal component of the electric

field be equal to the sum of charges inside the enclosed

volume divided by the dielectric constant. Since the kth

slice is located at the center of the kth and (k + l)th

elements, we consider both elements in applying Gauss’s

law. Approximating the electron density for the complete

volume as n~, the total charge is given by Q~ + Q~ + ~=

– qn~(V~ + V~+ ~). With reference to Fig. 3, it is apparent

that the input and output fluxes for the volume defined by

the kth and (k + l)th elements are Cd“A~_ ~.E~_ ~ and

‘d” Ak+l” Ek+l, respectively. Therefore, Gauss’s law is

expressed as – qn~(Vk + Vk+l)= ed[Ak+l. Ek+l – Ak.l”

Ek _ 11.solving for the charge density and substituting into

(16) then gives the drift current density for the kth
element:

For the k th element, the diffusion current density

component of (15) is written as

where Dk is defined as the electron particle diffusivity at

the k th slice and the derivative is approximated by the

difference in electron density between the (k + l)th and

kth elements divided by the elemental width, Ax. As

above, Gauss’s law is applied in determining the charge

densities for the kth and (k + l)th elements, and the

diffusion current density becomes

+Ak{~k +~k+l}~k–{~k+l~k}Ek+l]o (W



CONN AND BAUMAN: STATE-SPACE ANALYSIS 1407

Adding the contributions from displacement, drift, and Applying Gauss’s law and rearranging in terms of Elq

diffusion components (eqs. (11), (17), and (18), respec- gives

tiveiy) yields the total electron current density, .lt. Rear-

ranging in terms of E~ and collecting electric field terms

defines the system of state equations for elements 2 to
EN z ‘Jt –

‘N-2 “[:+a”E”-’
N–1:

tik=~Jt+Ak_l
[

Vk Dk

V’k+vk+l + 1— “Ek.l
Ed Ax” Vk Qia4”E”-1

[ 1Dk”Ak{Vk + Vk+l} E
—

Ax” Vk” Vk+l
k

[

Dk v~
+ Ak+l

A.x” Vk+l – Vk+Vk+l 1

OEk+l. (19)

[

4VN 4DN‘N
+ANO –—

3VN + 3(vN_~+vN) 9A XVN

4DN
+ 1“EN.

9A.x(VN.1 + vN)
(21)

Equations (13), (19), and (21) form a set of equations with

For the drift and diffusion current density components the generalized matrix form

of the Nth element, the charge density at the right-hand

boundary of the drift region is approximated through a E= AE+~Jt
parabolic interpolation in the drift region. This is a sec- Ed

where the A matrix is written as

1 2 3 ““” k–1 k k+l .“” N–2 N–1 N

[

~qw
o 0 ““-” o 0 0 . . . 0 0 0

Ed

X’l Y“ Z23 “““ o 0 0 . . . 0 0 0
~= : : :

0 0 0 ““” “ “ “‘k, k-l ‘k, k ‘k, k+l “ “ “ o 0 0

ro 0 0 ““” o 0 0 . . .
‘N, N-’ ‘N, N-I ‘N, ”

end-degree extrapolation of the adjacent charge density

values and is useful for minimizing slope discontinuity at

the boundary, particularly for the diffusion term. Given

the equation for a parabola, ~[ k ] = ak 2 + b, it can be

shown that ~[0] = 4/3~[1] – l/3~[2]. Using this result,

the charge density at the right-hand boundary of the Nth

element, n’N, is written as

41
n’N = —nN - —n’N_l.

33

The clerivative involved in the diffusion current density

contribution, however, requires the charge density gradi-

ent across the boundary. Considering an (N+ l)th ele-

ment, parabolic interpolation is again used, and based on

charge density values in the drift region, the charge den-

sity at the center of this element is approximated as

4 1
nN+l = —n’~ — —nN.

33

Thus, for the Nth element, the expression for the total

current density, Jt, becomes

‘“+1 — ‘N
Jt = @N – qv~i’t’” – Ax . (20)

and

[

Vk Dk
Xk>k_l=Ak–l”

Vk+vk+l
+—

AX”vk 1
‘k”Ak{vk + ‘k+l}

Yk,k=–
AX”vk”vk+l

[

Dk Vk
z – Ak+l”k,k+l —

Axc Vk+l – Vk+Vk+l 1
where XN, ~_2, YY,.N– 1, and ZN, ” are defined as the

electric field coefficients in (21).

Equation (22) has the general state equation form of

(l), expressing the time-domain behavior of electrons
within the RTD in terms of current and electric field.

Applying Laplace transformation, and assuming the total

current density to be normalized to unity, the frequency-

domain response of the RTD becomes

@)=(~ZN~~-A)-l ~INxl. (23)
e~

where ZNXN is the square identity matrix and ZNX1 is a

unit column vector. Given the electric field, the total

voltage across the device, relative to the cathode, can be
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Fig. 4. Device impedance (nontapered QWITT, LW = 0.01 ~m, m =
– 300 mS ~cm) versus frequency for varying drift region length as calcu-
lated using the state-space model (uniform velocity profile with u(x) =

U,at = 6x 106 cm\s, diffusion effects not included): — drift region
= 0.23 pm; --- drift region length= 0.07 #m. Symbols correspond to

results computed using the analytic solution obtained by Kesan et al. [8]:

❑ , ■ resistive and reactive components, respectively, W = 0.23 ,um; A,

A resistive and reactive components, respectively, W = 0.07 ~m.

written as

~(s) ={ LW+Ax/2}~l(,s)+ 3 @s)Ax+:E~(s)
k=l

= J(s)i(s) (24)

and since unity current density has been assumed, the

normalized device impedance ~(s) in O. cmz is directly

obtained.

V. COMPARISON WITH PREVIOUS RESULTS

To confirm the validity of the state-space approach, we

have compared our results with previously reported ana-

lytic solutions. Specifically, we have compared the state-

space results with the models of Kesan et al. [8] for ideal

devices and with the models of Botula et al. [7] that

include nonsaturated drift velocity and diffusion effects.

The comparison of the state-space formulation with the

analytic solution of Kesan et al. is presented in Fig. 4 for

diodes with varying drift region length (W= 0.23 and 0.07

~m). In all cases, the drift velocity is assumed to be

saturated at a value of 6 x 106 cm/s, with the injection

conductance taken to be – 300 mS. cm. At this point,

diffusion effects are not taken into consideration. For

state-space analysis, we have found that it is necessary to

subdivide the drift region into elements that are no greater

than one tenth of a wavelength in width at the maximum

frequency of interest. In this case, the wavelength is 0.06

Km at a frequency of 1000 GHz, which means that the
drift region must be subdivided into at least 38 elements.

For our analysis, we have used 75 elements in all cases.

The small-signal negative impedance of the diodes as

shown in Fig. 4 agrees very well with the analytic solution

of Kesan et al. [8] for all cases studied and for frequencies

up to 1000 GHz.

We have also compared the state-space method with

the results of Botula et al. in modeling transient transport

,12_

\N
0

\ \ :
\ u

\ 4:

w
>.—
u
Cn.

=.1; I I /0 $
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Fig. 5. Device impedance (nontapered QWITT, LW = 75 & W=
0.16 ~m) versus frequency as calculated using (a) — state-space
model (nonuniform velocity uPea~= 7 x 107 cm\s, u~at = 6 x 106 cm/S,

T = 8 X 10 – 14 s, diffusion effects not included, u = – 771.3 mS. cm}
(b) --- state-space model (nonuniform velocity, including diffusion

effects, m = – 728.5 mS. cm). Symbols correspond to results reported by
Botula and Wang [7]: ❑ , ■ resistive and reactive components, respec-

tively (nonuniform velocity, diffusion effects not included, u = – 781
ms. Cm); A, A resistive and reactive components, respectively (nonuni-
form velocity, including diffusion effects, u = – 658 mS. cm).

effects in the drift region. The two cases studied are

nonuniform carrier velocity not including diffusion and

nonuniform velocity including the effect of diffusion. As

described above in Section III, we use the same velocity

profile as Botula et al. (shown previously in Fig. 2) and

assume a constant diffusivity of DO = 15 cm2\s. For this

analysis ~ = 500 and, in all cases, the diodes are assumed

to be of constant cross-sectional area and a series para-

sitic resistance of 2 Pfl” cm2 is included, as in [7]. All

injection conductance values have been adjusted such that

the device impedance is normalized to – 10.6 PO” cm2 at

low frequency, allowing for a direct comparison with the

modeling by Botula et al. The results of this study are

given in Fig. 5, where the real and imaginary parts of the

small-signal impedance are given for the two cases.

In the first case, the device impedance predicted using

the state-space model agrees very well with the solution

obtained by Botula et al. Differences are apparent, how-

ever, when the effects of diffusion are included. In this

case, the state-space model predicts a slightly higher

cutoff frequency for the resistive component than that

predicted by the diffusionless model, whereas Botula

et al. predict a lower frequency cutoff. On further com-

parison, for the state-space model the inclusion of diffu-

sion results in a lower reactive component at the resonant

frequency since there is closer correspondence between

resistive components for the two cases, this implies that

diffusion has a smaller effect on the device impedance

than previously reported. Furthermore, given the differ-

ences in injection conductance required to normalize the

low-frequency negative resistance to 10.6 pO. cm2 for

cases including and excluding diffusion (42.8 mS. cm for

the state-space model versus 123 mS. cm reported by

Botula et al.), this also implies that the state-space model
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Fig. 6. Device impedance (nontapered QWITT, LW = 75 & W = 0.16,

0.24, 0.32 pm) versus frequency as calculated using the state-space
model including and excluding diffusion (injection conductance u =
– 771.3 mS. cm, identical for both formulations, upea~ = 7x 107 cm/s,

rJ~~~=6X106 cm/s, 7 = 8X10-14 s} _ state-space model excluding
diffusion effects; ---- state-space model including diffusion effects; O
W= 0.16 Nrn, ❑ W= 0.24 pm; A W= 0.32 ,um.

predicts that diffusion affects the device impedance less

than the modeling proposed by Botula et al.

VI. NEW RESULTS

In this section, we report new results for the perfor-

mance and modeling of active and passive RTD’s. These

results include the effect of diffusion on the impedance of

RTD’s of various lengths, the performance of long diodes

with a positive injection conductance, and a demonstra-

tion of the traveling wave nature of current, charge, and

electric field in the drift region.

Init~ally, we have studied the quantitative effects of

diffusion on the impedance of active diodes of negative

injection conductance for various ,diode lengths. For this

study, we have sele$ed a typical RTD with a quantum

well length of 75 A and an injection conductance of

– 771,3 mS” cm. The impact of diffusion on the real part

of the RTD impedance is shown in Fig. 6(a), where the

RTD impedance is plotted versus frequency for drift

region lengths of 0.16,,0.24, and 0.32 pm. For each diode

configuration, we have plotted the impedance using the

complete model, velocity profile and diffusion included,

Fig. 7. Resistance versus frequency (nontapered QWITT, LW = 0.01
~m, W = 0.4 pm, o = +500 mS. cm): O negative resistance as calcu-
lated using analytic solution obtained by Kesan et al. [8]; — positive
resistance as calculated using state-space model with non-constant-
velocity profile (uPeak = 7 X 107 cm/s, U,at = 6 X’106 cm/s, r = 8 X 10-14

s), neglecting diffusion; ---- positive resistance as calculated using
state-space model with non-constant-velocity profile, including diffusion,

and the model where the diffusion term of the current is

neglected, It is seen in Fig. 6(a) that in all cases the effect

of diffusion adds a positive component to the RTD resis-

tance and that the effect is more pronounced for long

diodes. For short diodes (W= 0.16 ~m), the diffusion

current reduces the negative resistance for low frequen-

cies by approximately 12%. The reactive component of

the impedance is shown in Fig. 6(b). Here it is noted that

the agreement between models with respect to the pre-

dicted resonant frequency improves as the drift regionl

length decreases.

We now consider the performance of l,ong diodes that

have a positive quantum-well injection conductance. Pre-

vious results [8] indicate that even with a positive conduc

tance, the RTD will still exhibit a negative device

impedance for certain values of the drift region length

and quantum well admittance. Basically, the drift region

length must be near a multiple of one wavelength at the

operating frequeney if it is to produce a negative

impedance. In agreement with the resuhs reported in [12],

our results confirm that these devices do not exhibit

negative impedance at any frequency because of the com-

bined effects of diffusion current and a nonconstant ve-

locity profile in the drift region. This is demonstrated in

Fig. 7, where the RTD resistance, positive or negative, is

plotted as a function of frequency for a diode with an

injection conductance of +500 mS. cm and a drift region

length of 0.4 pm. The analytic solution of Kesan et al. [8]
shows that this diode exhibits a negative resistance in the

region of 120 GHz. The case wqere the velocity profile

and diffusivity are included shows that the resistance is

positive for all frequencies, approaching zero at high

frequency and 140 wfl” cm2 at low frequeney, as ex-

pected. Similarly, for the case where diffusion is ignored

but the velocity profile is included, the diode resistance is

always positive with asymptotic behavior, as before, but

now shows a fairly strong oscillation with frequency.
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Fig. 8. Small-signal phasor magnitudes of (a) electric field and (b) charge density versus position in the drift region

(nontapered QWITT, LW = 75 & W= 0.16 pm) for three different frequencies: O 1 GHz (below resonance~ ❑ 100 GHz
(at resonance); A 1000 GHz (above resonance). The origin is located at the injection plane, defined by the quantum well
region. — Calculated using state-space model, m = – 771.3 mS. cm, non-constant-velocity profile (uPea~ = 7 X 107 cm/s,

v . . . = 6 x 106 cm/s, 7 = 8 x 10-14 s), neglecting diffusion; ---- calculated using state-space model, ~ = – 728.5 mS ~cm,.,..
with non-constant-velocity profile, including diffusion.

As given by (23), the electric field at each of the

defined elements, hence as a function of position in the

QWITT, directly results from the state-space modeling

approach. Given the elemental electric field, the charge

density, as well as the current density, components are

readily obtained. Fig. 8 shows the magnitudes of the

elemental electric field and charge density for nonuni-

form velocity formulations including and excluding diffu-

sion for three different frequencies: 1 GHz (below reso-

nance), 100 GHz (at resonance), and 1000 GHz (above

resonance). Physical QWITT parameters are as previously

studied, with the corresponding impedance versus fre-

quency shown in Fig. 5.

Two features are immediately apparent in considering

Fig. 8. First, the electric field and charge density appear

to be complementary as a function of position. For exam-

ple, for the 1 GHz case, the electric field decays across

the RTD while the charge density increases to an equilib-

rium value. Second, both the electric field and the charge

density decrease in magnitude with frequency while dif-

ferences in the charge density for formulations including

and excluding diffusion increase with frequency. It is to

be noted that the wavelength of oscillations apparent in

the electric field for the 1000 GHz, diffusionless case

corresponds to 0.06 ~m, as expected, demonstrating the

traveling wave nature of carrier transport in the drift

region.

Fig. 9 shows the magnitudes of the current density

components for the same parameters as in Fig. 8. In

general, the displacement current density component

dominates at higher frequencies, while the drift current

component dominates at lower frequencies and the diffu-

sion current appears to offer a relatively small contribu-

tion. An important feature to note is the peak in drift and

diffusion current density components (for the formulation

including diffusion) occurring at 0.05 pm. However, these

current density components are in phase opposition so

that the conduction current, given by the sum of the drift

and diffusion components, roughly corresponds to the

drift component for the diffusionless formulation. Again,

oscillations in the displacement current density for the

1000 GHz, diffusionless case have a wavelength of

0.06 pm.

VII. CONCLUSION

We have presented a state-space model of the QWITT

diode and confirmed its accuracy through comparison

with previous analytical solutions obtained by Kesan et al.

and Botula et al. The comparison showed that the state-

space method agrees with previous models in most cases.

In agreement with results obtained by Song et al., one

significant difference is that for diodes with a positive

injection conductance and a long drift region, our models
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Fig. 9. Small-signal phasor magnitudes of (a) displacement, (b) drift,

and (c) diffusion current density comp~nents versus position in the drift

region (nontapered QWITT, LW = 75 A, W = 0.16 #m) for three differ-

ent frequencies: O 1 GHz (below resonance); ❑ 100 GHz (at reso-

nance); ~ 1000 GHz (above resonance). The origin is located at the
injection plane defined by the quantum-well region. — Calculated
using state-space model, u = – 771.3 mS. cm, non-constant-velocity pro-
file (u.pea~ = 7 x 107 cm,/s, U,at = 6 X 106 cm,/s, 7 = 8 x 10-14 s), neglect-

ing diffusion; -––– calculated using state-space model, u = – 728.5
mS. cm, non-constant-velocity profile, including diffusion.

do not predict a negative real part of the device input

impeclance, as predicted by the model of Kesan et al. The

input impedance always has a positive real part because

of the damped traveling wave nature of the displacement

current in the drift region. This only becomes evident

when carrier diffusivity and velocity profiles are consid-

ered. A second difference noted was that the state-space

model indicates that carrier diffusion has a smaller effect

on the device impedance than predicted by Botula et al.

The state-space method is readily suited to the analysis

of diodes and the circuits in which they are embedded. It

is also particularly useful for the study of millimeter-wave

oscillators since the eigenvalues of the complete system

are contained in the system matrix. It is expected that this

technique can be extended to many circuit and device

applications. A prime candidate for the application of this

technique is the optical p-i-n photo detector diode, which

is useful in high-speed applications. Generation and re-

combination processes must be included in the analysis of

the p-i-n diode, an extension that is now being consid-

ered.

We have found that the state-space modelirig approach

to transit-time-limited devices provides a great deal of

insight into the physical process within the diode. For

example, the traveling wave natures of all currents, fields,

and charge densities are a natural outcome of the analy-

sis. This method of anaIysis is directly useful for time-

domain analysis and time-domain nonlinear simidation

since the state equations can be implemented directly in

SPICE computer programs.
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